Nitric Oxide Mediates 5-Aminolevulinic Acid-Induced Antioxidant Defense in Leaves of Elymus nutans Griseb. Exposed to Chilling Stress
نویسندگان
چکیده
Nitric oxide (NO) and 5-aminolevulinic acid (ALA) are both extremely important signalling molecules employed by plants to control many aspects of physiology. In the present study, the role of NO in ALA-induced antioxidant defense in leaves of two sources of Elymus nutans Griseb. (Damxung, DX and Zhengdao, ZD) was investigated. Chilling stress enhanced electrolyte leakage, accumulation of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide radical in two E. nutans, which were substantially alleviated by exogenous ALA and NO application. Pretreatment with NO scavenger PTIO or NOS inhibitor L-NNA alone and in combination with ALA induced enhancements in electrolyte leakage and the accumulation of MDA, H2O2 and superoxide radical in leaves of DX and ZD exposed to chilling stress, indicating that the inhibition of NO biosynthesis reduced the chilling resistance of E. nutans and the ALA-enhanced chilling resistance. Further analyses showed that ALA and NO enhanced antioxidant defense and activated plasma membrane (PM) H+-ATPase and decreased the accumulation of ROS induced by chilling stress. A pronounced increase in nitric oxide synthase (NOS) activity and NO release by exogenous ALA treatment was found in chilling-resistant DX plants exposed to chilling stress, while only a little increase was observed in chilling-sensitive ZD. Furthermore, inhibition of NO accumulation by PTIO or L-NNA blocked the protective effect of exogenous ALA, while both exogenous NO treatment and inhibition of endogenous NO accumulation did not induce ALA production. These results suggested that NO might be a downstream signal mediating ALA-induced chilling resistance in E. nutans.
منابع مشابه
Improved cold tolerance in Elymus nutans by exogenous application of melatonin may involve ABA-dependent and ABA-independent pathways
Melatonin is an important secondary messenger that plays a central role in plant growth, as well as abiotic and biotic stress tolerance. However, the underlying physiological and molecular mechanisms of melatonin-mediated cold tolerance, especially interactions between melatonin and other key molecules in the plant stress response, remain unknown. Here, the interrelation between melatonin and a...
متن کاملEffect of exogenous Gama-aminobutyric acid on physiological tolerance of wheat seedlings exposed to chilling stress . Praviz Malekzadeh*, Jalil Khara and Reza Heidari
Accumulation of γ -aminobutyric acid (GABA) is associated with stress factors in plant systems. The objective of the current study was to compare GABA concentration in wheat plants under chilling stress. After 48 h treatments of seedlings under chilling stress combined stresses with and without GABA, morphological and biochemical assays were conducted. It was observed that the inhibition of see...
متن کاملExogenous 5-Aminolevulenic Acid Promotes Seed Germination in Elymus nutans against Oxidative Damage Induced by Cold Stress
The protective effects of 5-aminolevulenic acid (ALA) on germination of Elymus nutans Griseb. seeds under cold stress were investigated. Seeds of E. nutans (Damxung, DX and Zhengdao, ZD) were pre-soaked with various concentrations (0, 0.1, 0.5, 1, 5, 10 and 25 mg l(-1)) of ALA for 24 h before germination under cold stress (5°C). Seeds of ZD were more susceptible to cold stress than DX seeds. Bo...
متن کاملCopper-stress tolerance induced in Phlomis tuberosa depends on nitric oxide accumulation
In this study, we compared the impact of high Cu concentrations on the photosynthetic apparatus and antioxidant capacity of the Phlomis tuberosa. Plants were grown in perlite culture for 5 weeks, and then treated with 0, 100, 200, 300 and 400 µM Cu for 21 days. Results indicated that Phlomis tuberosa plants showed tolerance to 100 and 200 µM Cu. This increased tolerance was achieved through enh...
متن کاملNitric oxide ameliorates salinity tolerance in Pyrodwarf pear (Pyrus communis) rootstocks by regulating polyamine content
Nitric oxide (NO), an endogenous signaling molecule, is involved in various physiological processes and stress responses in plants. In the present research, Pyrodwarf pear (Pyrus communis) rootstocks were grown by nutrient solution to investigate the effects of sodium nitroprusside (SNP) application as an NO donor at 0, 0.1, 0.5, and 1 mM levels on plant stress tolerance, content of ma...
متن کامل